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ABSTRACT

One of the most challenging parts of reliability analysis is building a reliability model

of the system. Reliability block diagram, Markov models, and fault tree analysis are

some of the most common techniques for constructing a reliability model. Fault tree

analysis provides a way to combine components, which together can cause system failure.

This research uses both static and dynamic fault trees to quantify the reliability of a

hybrid vehicle system and to analyze supply chain risk. The hybrid vehicle combines

a mechanical power source, such as the internal combustion engine (gasoline engine or

diesel engine), and an electric power source (electric motor) to take advantage of two

power sources and compensate from each source. The hybrid systems complexity and

non-mature technology carry potential risks for the vehicle. This research uses a static

fault tree to analyze the reliability of the 2004 Toyota Prius under different operational

modes. We apply Bayesian analysis that combines survey data to estimate the reliability

of the hybrid vehicles battery. Supply chain risk analysis is increasingly becoming an

important field and supply chain risk models help identify significant risks that can

occur and the consequences if those risks occur. We use dynamic fault trees, which are

relatively new in reliability analysis, to understand the timing of potential failures in

different types of supply chains. We estimate failure rates for each supply chain under

different production scenarios and simulate delivery time for the supply chain.
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CHAPTER 1. OVERVIEW OF STATIC AND DYNAMIC FAULT TREE

ANALYSIS

We live in a world full of unknown and uncertainty. Many unexpected and uncon-

trollable things happen every day. In the field of engineering, failure is very common for

all kinds of engineering systems. Different failures could lead to different consequences.

Failures are caused by many factors, such like design errors, poor manufacturing tech-

niques and lack of quality control, substandard components, lack of protection against

over stresses, poor maintenance, aging, wear out and human factors (Verma et al., 2010).

Most often, we already know in what stage the engineering system is. The first step of

reliability analysis is exploring potential reasons which may give rise to failure. Based

on the relationship of each component in the system, the reliability model of the system

can be built to estimate the reliability. From the calculation results, we need to find

which reason contributes to the failure. According to what we find and the current stage

of the engineering system, some proper methods can be used to improve the reliability

of the system.

The most challenging part of reliability analysis is building the reliability model of

the system. Reliability block diagram, Markov models and fault tree analysis are the

most common techniques for constructing reliability model. Reliability block diagram

is a visual technique which use blocks to express logical relationship of the system.

The reliability of system is calculated by analytical methods. The biggest disadvantage

of the reliability block diagram is not considering conditions of the system, such like

dependencies between components, repairable components, coverage factors, multiple
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states. Markov models are developed to overcome these problems. But for complex and

large system, Markov model could become too complicated (Fuqua, 2003). Fault tree

analysis neatly sidesteps issues raised by Markov model by using diverse solutions.

Fault tree is based on the probability of individual components and logical relation-

ship between different components. According to the fault tree analysis, we can easily

identify the cause of failure and estimate the reliability information of a system. Fault

tree analysis consists of static fault tree analysis and dynamic fault tree analysis. In

static fault tree, the OR gate and the AND gate are often used to describe the failure

situation. The failure expression of a static fault tree is represented by minimal cut set

based on Boolean algebra. In dynamic fault tree, the priority and gate, the sequence

enforcing gate, the spare gate and the functional dependency gate can be used to depict

multiple failure modes in a single dynamic fault tree. The main methods developed to

solve dynamic fault tree are Markov models, numerical method and simulation method.

A dynamic fault tree usually consists of static gates and dynamic gates. The unique

function of dynamic gates is depicting interactions in a complex system, which cannot

be realized by static gates. In order to understand fault tree better, we apply static fault

tree and dynamic fault tree in risk analysis of different areas.

The hybrid vehicle is becoming more popular since it was invented. The hybrid

vehicle combines a mechanical power source, such as the internal combustion engine

(gasoline engine or diesel engine), and an electric power source (electric motor) to take

advantage of two power sources and compensate from each source. The hybrid systems

complexity and non-mature technology carry potential risks for the vehicle. In Chapter

2, the reliability analysis of hybrid systems is conducted with application to the 2004

Toyota Prius. We calculates the reliability of the hybrid vehicles by building fault trees

for different operation modes and applying Bayesian analysis that combine survey data

to estimate the reliability of the battery. Although the focus of this study is the hybrid

vehicle, the innovative Bayesian analysis that combines a prior probability distribution
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with survey data of customers can be applied to other engineered components, especially

new technology where reliability data is unavailable.

Supply chains are becoming more vulnerable and sensitive because of globalization,

complexity, and occurrence of various risk events. Therefore, supply chain risk analysis

is a significant field of supply chain risk management, which can help us recognize the

reasons of risk occurring and figure out the main reasons to have mitigation strategies.

In Chapter 3, we analyze supply chain risk by using dynamic fault tree. The reliability

models for two typical supply chains are built by dynamic fault trees. Then the failure

rates and delivery time for supply chains are estimated by simulation results under

low volume production scenario and high volume production scenario. An innovative

dynamic gate is designed for dynamic fault tree modeling.
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CHAPTER 2. ASSESSING THE RELIABILITY OF HYBRID VEHICLE

SYSTEM: APPLICATION TO THE 2004 TOYOTA PRIUS

2.1 Introduction

Interest in environmental issues, global climate change, and energy conservation has

contributed to the development of alternatives to the traditional automobile internal

combustion engine. The hybrid vehicle plays a pivotal role during a transitional period

from the conventional vehicle to an electrical vehicle. From 2007 to 2015, 3,915,883

hybrid electric vehicles have been sold in the United States (AFDC, 2016). As hybrid

technology matures and more hybrid cars are in use, the reliability of these cars becomes

an important issue for owners who want to ensure they are purchasing vehicles that

will last. Hybrid vehicles have great fuel economy, and some reports suggest the hybrid

vehicle is more reliable than traditional automobiles (Haj-Assaad, 2014). However, a

hybrid vehicle costs more and are heavier, and the battery replacement schedules are

unknown. Cold weather may lead to more failures in the hybrid vehicle (Hunting,

2016). Although surveys of owners of hybrid vehicles suggest these vehicles are reliable,

people may not be entirely truthful in surveys or accurately recall the reliability of their

vehicles (Jensen, 2009). The variety of opinions demands a more careful analysis of the

reliability of hybrid vehicles.

The existing literature on hybrid vehicles mainly focuses on designing control method-

ologies to improve the efficiency of energy use and the vehicles performance under differ-

ent environmental conditions. Bizon (2011) proposes a topology method that improves

the performance of the inverter system to increase the efficiency of operation and relia-
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bility of the whole system. Meegahawatte (2010) prove that potential energy could be

saved from hydrogen-powered fuel cells by analyzing a fuel cell series hybrid and com-

paring different fuels powered vehicles. Pourhashemi (2014) introduce a method for

helping designers find an optimal design of a parallel hybrid electric vehicle. Panday

(2015) show the performance and lifetime of vehicle are highly influenced by the variable

temperature.

A large portion of the literature analyzes the effect of hybrid vehicles on the environ-

ment, the economy, and driving behavior. Kaushal et al. (2009) finds the factors which

can minimize life cycle cost, petroleum consumption, and greenhouse gas emissions to

obtain the optimal design of plug-in hybrids. Gallagher and Muehlegger (2011) present

the popularity of hybrids may increase on account of sales tax waivers and higher fuel

prices which could lead to the future fuel savings. Fontaras et al. (2008) find remark-

able advantage of hybrids on fuel economy and air emissions. Some of the literature

focuses on predicting or improving the reliability of different components in the hybrid

vehicle. Hirschmann et al. (2007) predict the reliability of inverters in hybrid electri-

cal vehicles by developing a simulation to estimate the temperature of a three-phase

converter during long operations. Mirhakimi and Karimi (2014) recommend more re-

dundancy within a hybrid vehicle. Allella et al. (2005) develop an optimization model

to increase the reliability of the hybrid vehicles electric propulsion system. However, no

study has attempted to model the reliability of the entire hybrid vehicle and analyze how

the reliability changes under different operating modes.

The hybrid vehicle system is a complex system because it combines an internal com-

bustion engine and electric battery. Often, more components in a system mean more

potential for failure (Rausand et al., 2004), but it remains to be seen if this is true with

the hybrid vehicle system. The hybrid vehicle has multiple operation modes, and each of

these modes could fail. The propulsion system is composed of a prime motor, an electric

motor with DC/DC converter, a DC/AC inverter, a controller, an energy storage system,
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and a transmission system. This paper estimates the probability of failure for the main

functional components and uses these failure probabilities to estimate the reliability per-

formance of the hybrid system in distinct operation modes. Due to limited knowledge

and data about the hybrid vehicles battery, we employ a Bayesian approach to estimate

the reliability of this component. The innovative Bayesian analysis combines a prior

probability distribution with survey data from owners of a hybrid vehicle to estimate

parameters for a Weibull probability distribution. This method can be applied to new

technology where reliability data might be limited or unavailable.

The Toyota Prius is one of the more popular hybrid vehicles on the market and

represents the newest hybrid technology. The second generation Prius won the prestigious

Motor Trend Car of the Year award and best-engineered vehicle of 2004 (Koraku, 2003).

This paper assesses the reliability of the 2004 Toyota Prius although the model can be

extended to other hybrid vehicle systems. The 2004 Toyota Prius uses the Toyota Hybrid

System II (THS-II) hybrid system, which is equipped with a high voltage (HV) battery,

engine, motor and generator, power control unit (PCU), and planetary gear unit. THS-II

has both series and parallel system configuration.

The unique contributions of this paper are the development of a fault-tree model to

quantify the time-dependent reliability of the hybrid vehicle and using Bayesian analysis

to estimate the probability the HV battery will fail. The Bayesian model relies on

customer survey data, which we treat as interval data. To our knowledge, this paper

represents the first overall model and analysis of the hybrid vehicle. Section 2 describes

the fault-tree model and the Bayesian analysis for reliability. Section 3 applies the

fault tree model and reliability analysis to the 2004 Toyota Prius and calculates time-

dependent probabilities for the hybrid vehicle. Conclusions appear in Section 4.
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2.2 Model

This paper models and calculates the reliability of the 2004 Toyota Prius by devel-

oping a fault tree for different operation modes and use typical functions for reliability.

Most of the components reliability is described by an exponential function based on a

components mean time to failure (MTTF ). The hybrid vehicle batterys reliability is

described by a Weibull distribution, and the parameters of this distribution are esti-

mated using Bayesian analysis. The components reliabilities are used in the fault tree

for different operation modes to calculate the probability of failure for the hybrid system.

2.2.1 Fault Tree

A fault tree is used to model the probability a system fails based on the probability

failures of individual components. We can identify the cause of failure and obtain the

reliability of a system from fault tree analysis. The fault tree allows us to determine the

operational relationship among different components under different operation modes,

and we use the fault tree to derive analytical expressions for the probability of failure.

2.2.2 Reliability Based on Exponential Distribution

The fault tree requires assessing the probability that each component will fail. Since

the goal of this analysis is to determine the probability of failure at different points in

time, we seek a method to evaluate the reliability of each component. Many components

in an engineering system are standard components whose failure rates are known. We

assume the reliability R(t) at time t of a standard component follows an exponential

distribution (Rausand et al., 2004):

R(t) = P (T > t) = e−vt (t ≥ 0) (2.1)
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where T is the random variable for the time of failure and v > 0 is the rate of failure for

the exponential distribution. The MTTF is:

MTTF =

∫ ∞
0

R(t)dt =

∫ ∞
0

e−vtdt =
1

v
(2.2)

We use a components MTTF to calculate v and the exponential distribution to calculate

the probability a component has failed by time t. The probability a component has failed

within the time interval [0, t] is:

P (T ≤ t) = 1−R(t) = 1− e−vt (2.3)

2.2.3 Reliability Based on Bayesian Analysis

As will be discussed in Section 3, new engineering systems will have new components

whose reliability or MTTF is unknown. We may have some information about the fail-

ure rate. This information could come from initial tests or, as is the case in this paper,

from customer survey data. We consider that the distribution for the probability that

the component fails within the time interval [0, t] follows a Weibull distribution

P (T ≤ t) = F (t|β, λ) = 1− e−λtβ (2.4)

where λ > 0 is the scale parameter and β > 0 is the shape parameter for the Weibull

distribution. The Weibull distribution provides greater flexibility to model the proba-

bility of failure than the exponential distribution. The Weibull distribution can model
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hazard functions that are decreasing, increasing, or constant.

The probability density for the Weibull distribution is:

f(t|β, λ) = λβtβ−1e−λt
β

(2.5)

Bayesian analysis requires prior probability distributions for λ and β, and we assume

each of these parameters follows a gamma distribution. Typically, the parameters for

the gamma distribution are chosen so that the gamma distribution is “non-informative”

and closely resembles a uniform distribution (Gelman et al., 2014). The goal of the

Bayesian analysis is to use the known information to estimate posterior distributions for

λ and β.

The known information in this paper is derived from consumer survey data in which

customers report time intervals in which the component has failed. If a consumer reports

that a component fails within a time interval[t1, t2], the likelihood of observing this result

is:

P (t1 ≤ T ≤ t2) = F (t2|β, λ)− F (t1|β, λ) (2.6)

where F (t2|β, λ) is the Weibull cumulative distribution function from equation (2.4).

Sometimes a consumer reports that he or she has used an engineered systems for a

length of time t3 and the component has not failed within that that time. This ob-

servation is typically called censored data because the observation has a lower bound

but no upper bound. For this type of observation, the likelihood of observing that the

component has not failed before t3 is:

P (t3 ≤ T ) = 1− F (t3|β, λ) (2.7)
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Bayes rule allows us to use these likelihood functions with the prior distributions for β

and λ to calculate a posterior distributions for these parameters:

g(β, λ|t) =
L(t|β, λ)h(β)h(λ)

p(t)
(2.8)

where t is a vector of observations (intervals or censored values), g(β, λ|t) is the posterior

joint probability distribution for β and λ given the observations t, L(t|β, λ) represents

the likelihood of observing the interval or censored data as represented by equations (2.6)

and (2.7) , h(·) represents the gamma prior distribution, and p(t) is the normalization

constant.

Since the prior distributions are not conjugate with the likelihood distributions, an

analytical solution for g(β, λ|t) is impossible. The Gibbs sampler, a type of Markov

Chain Monte Carlo simulation, can be used to estimate g(β, λ|t).

The Gibbs sampler is used to estimate the posterior distributions for β and λ. The

Gibbs sampler requires distributions for each parameter conditional on the other param-

eters and the observations: p(β|λ, t) and p(λ|β, t). The algorithm for the Gibbs sampler

is as follows:

1. Choose a set of initial values for the parameters β0, λ0

2. Generate (β1, λ1|β0, λ0)by sampling:

β1 from p(β|λ0, t)

λ1 from p(λ|β1, t)

3. Repeat step 2 n times to obtain chain {β0, λ0; β1, λ1; βn, λn}.

The results of Gibbs sampler is convergent under some regularity conditions. The

simulation can generate the conditional distributions p(β|λ, t) and p(λ|β, t), which are

difficult to obtain from analytical calculation. WinBUGS (Lunn et al., 2000) is free
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software that implements the Gibbs sampler in the Windows environment to simulate

and calculate the posterior distribution.

Bayesian analysis for reliability with censored or interval data has seen a limited

amount of research. Coolen (1997), Coolen (1996) developed an innovative model for

Bayesian analysis of failure data and introduced a method to perform reliability analysis

based on priors derived from an engineers experience and censored data. Van Dorp and

Mazzuchi (2004) build a Bayes inference model and use Markov chain Monte Carlo meth-

ods for life testing. Fernandez (2000) applied a Bayesian approach for reliability analysis

with censored data. Other papers use a Bayesian approach to incorporate censored data

of different problems in different areas. Wong et al. (2005) use a Bayesian approach

to analyze multilevel interval-censored data from a clinical dental study. Greco et al.

(2016) investigation better methods based on Bayesian approach to handle a left-censored

continuous biomarker in a family-based study.

2.3 Application to Hybrid System

We apply the fault tree and Bayesian analysis to the hybrid Toyota Prius. A hybrid

system combines a mechanical power source, such as an internal combustion engine

(gasoline engine or diesel engine) and an electric power source (electric motor). The

hybrid system is designed to provide a smooth response and sufficient power while taking

advantage of the two power sources by compensating from each source. The hybrid

control system selects the best combination control mode of these two power sources

depending on diverse driving conditions. When the car is running at low speeds (less

than 40 mph), the electric power source is sufficient to provide power to the wheels,

and the hybrid system only uses the HV battery. If extra power is needed for sudden

acceleration, the hybrid system uses the engine and battery simultaneously. Although

hybrid systems are equipped with an electric motor, the electric motors do not need

external charging as in electric vehicles. In the 2004 and later Priuses, the traditional
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brake booster is replaced by a new regenerative brake system to improve power efficiency.

Depending on the motor type, the regenerative brake system can increase fuel efficiency

by at least 20% (Ahn et al., 2009).

The automobile main components are the engine, automotive chassis, automotive

body, and the electric system. We keep five main components which are critical to the

operation of hybrid vehicle and leave subtle parts out of the analysis like joints, ball

sockets, and hoses. The main components are:

1.HV Battery

2.Engine

3.Vehicle Electrical Equipment

[Motor Generator 1 (MG1), Motor Generator 2 (MG2)]

4.Vehicle Power Control Unit

[Power Control Unit (PCU)]

5.Mechanical System

[Reduction Gear, Planetary Gear, Wheels]

The THS-II hybrid system in the Toyota Prius integrates the series hybrid system

and parallel hybrid system together to achieve better performance by using the benefits

of both systems. The system has two significant electrical devices: Motor Generator 1

(MG1) and Motor Generator 2 (MG2). MG1 and MG2 serve as both highly efficient

alternating current generators and electric motors, and they provide extra power to

assist the engine if needed. A planetary gear unit is a power splitting device. MG1 is

connected to the sun gear, MG2 is connected to the ring gear, and the engine output shaft

is connected to the planetary gear. The sun gear and ring gear belong to the planetary

gear. These components are used to combine power delivery from the engine and MG2,

and to recover energy to the HV Battery. A reduction gear is used to ensure extremely

quiet operation. After simplification, the THS-II system can be drawn as Figure 2.1.
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Figure 2.1: Simplified Structure of Hybrid System

2.3.1 Fault Tree Model

Since the operation of a hybrid system depends on the driving conditions, the fault

tree considers the different operational scenarios. The five operational scenarios are:

starting, driving under normal conditions, sudden acceleration, deceleration and braking,

and battery recharging (Koraku, 2003).

A functional block diagram describes the operational logic among different compo-

nents and demonstrates how the components work together in series or in parallel. The

functional block diagram is translated to a fault tree where components in series in the

functional block diagram are connected via an OR gate in a fault tree and components in

parallel are connected via an AND gate. The 8 main components with their abbreviations

are listed in Table 2.1.

2.3.1.1 Start and driving at low speeds

When the hybrid vehicle is starting or moving at low speeds, the engine is not needed

to provide power. The battery outputs electrical current to the PCU, and the MG2 serves
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Table 2.1: The Abbreviations of Main Components

Component Abbreviation
HV Battery H
Engine E
MG1 M
MG2 N
PCU P
Reduction gear R
Planetary gear G
Wheels W

as a motor to generate power to the driving wheels. The MG1 rotates but it does not

generate electricity. The functional block diagram shows the main components in series

in Figure 2.2, which translates to a fault tree in which the components are connected

via an OR gate in Figure 2.3.

Figure 2.2: Functional Block Diagram for Starting

The fault tree can be translated to a Boolean algebraic equation describing failure

during starting T1 as failure in one of the five components:

T1 = H + P +N +R +W (2.9)

2.3.1.2 Driving under normal conditions

During normal driving conditions (less than 40 mph), the engine runs and provides

power. The mechanical power from the engine is divided by the planetary gear unit.
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Figure 2.3: Fault Tree for Starting

Some of the power drives MG2, and some of the power drives the wheels directly. During

normal driving conditions, MG1 runs in the same direction to generate electrical power

for MG2. MG2 starts and runs to provide an electric assist as a motor. The functional

block diagram shows the main components in series and parallel in Figure 2.4, which

translates to a fault tree in which the components are connected via an OR gate and an

AND gate in Figure 2.5.

Figure 2.4: Functional Block Diagram for Normal Driving Conditions

Boolean algebra reduces failure during normal driving conditions T2 to the failure of

one of the four components failing:

T2 = E +G+W +R (2.10)
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Figure 2.5: Fault Tree for Normal Driving Conditions

2.3.1.3 Sudden acceleration

Sudden acceleration or speeds over 100 mph require a sudden force which comes from

the HV battery. The battery generates current going to the PCU which passes current

to MG2. MG2 serves as a motor under this scenario. In order to ensure a smooth

response for improving acceleration performance, the engine and the high-output motor

should work together. During the sudden acceleration, the operation processes of engine

is the same as driving under normal conditions. The functional block diagram shows the

main components in series and parallel in Figure 2.6, which translates to a fault tree in

Figure 2.7.

Failure during deceleration and braking T3 includes the redundancy between the

engine and HV battery:

T3 = W +R +HE + PE +NE +GH +GP +GN (2.11)
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Figure 2.6: Functional Block Diagram for Sudden Acceleration

2.3.1.4 Deceleration and braking

During the deceleration and braking process, the Toyota Prius uses a creative concept

called regenerative braking. Regenerative braking converts kinetic energy to electrical

energy which is stored in the HV Battery. MG2 works as a high-output generator, driven

by the wheels. The functional block diagram shows the main components in series in

Figure 2.8, which translates to a fault tree in Figure 2.9.

The fault tree can be translated to a Boolean algebraic equation describing failure

during deceleration and braking T4 as failure in one of the five components:

T4 = W +R +N + P +H (2.12)

2.3.1.5 Battery recharging

The Toyota Prius cannot be recharged from an external power supply like a plug-in

hybrid vehicle. The HV battery has to maintain sufficient reserves to satisfy the driving

requirements. The battery is recharged by the engine which drives the generator (MG1)

when the battery level is lower than the standard level. Figure 2.10 depicts the functional

block diagram, and Figure 2.11 depicts the fault tree.
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Figure 2.7: Fault Tree for Sudden Acceleration
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Figure 2.8: Functional Diagram for Deceleration and Braking

Figure 2.9: Fault Tree for Deceleration and Braking

The fault tree can be translated to a Boolean algebraic equation describing failure

during battery recharging T5 as failure in one of the five components:

T5 = E +G+M + P +H (2.13)

Because the vehicle needs to operate in each of the five driving scenarios in order for

the vehicle to operate properly, the fault tree for the entire hybrid system connects the

five operational modes via an OR gate, as depicted in Figure 2.12.

The fault tree means that the failure in the hybrid system T6 occurs if failure in one

of the five modes occurs:

T6 = T1 + T2 + T3 + T4 + T5 (2.14)
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Figure 2.10: Functional Block Diagram for Battery Recharging

Figure 2.11: Fault Tree for Battery Recharging

Inserting the failure modes for each of the five operational modes and eliminating similar

terms via Boolean algebra, we arrive at the minimal cut sets for the total failure in hybrid

system:

T6 = H + P +N +R +W + E +G+M (2.15)

The hybrid system fails if any one of the 8 main components identified at the beginning

of this section fails. This result should not be surprising because automobile vehicles

need all of their components to function in order to operate properly. Since the hybrid

vehicle can provide power via two different modes, one could wonder if the vehicle can

operate if only one of the power systems fail. Although the vehicle could accelerate
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Figure 2.12: Fault Tree for Total Failure in Hybrid System

suddenly via either the engine or the HV battery, the vehicle requires all components to

operate in order for all the operational modes to work correctly. The functional block

diagram, fault tree, and Boolean algebra justify this conclusion.

2.3.2 Data Collection and Component Probability Estimation

2.3.2.1 Engine and Other Main Components

The reliability of the engine and the HV battery are based on the number of miles the

vehicle travels. Since the reliability of other components are determined on the number

of years, we need to translate failure in number of miles to failure in number of years.

We calculate the average number of miles traveled per year in the United States. The

U.S. Federal Highway Administration records the average annual miler per driver by age

group (OHPI, 2016) (see Table 2.2). We weight the average number of miles driven by

each age group by the proportion of the population in the United States according to age

(Joyce A. Martin et al., 2015). Based on these two data sources, a car averages 12,826

miles per year.

The engine in the 2004 Toyota Hybrid is the Toyota 1NZ-FE/FXE engine. According

to WikiMotors, the official life span of this engine is 120,000 miles (WikiMotors, 2016).

Assuming 12,826 miles in a year, the MTTF of the engine is 120000/12826 = 9.4 years.
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Table 2.2: Average Annual Miles per Driver

Age Male Female Total Percentage
15-19 8,206 6,873 7,624 7.10%
20-34 17,976 12,004 15,098 20.30%
35-54 18,858 11,464 15,291 27.90%
55-64 15,859 7,780 11,972 11.80%
65+ 10,304 4,785 7,646 13.10%

Total=80.2%
Average 16,550 10,142 13,476 Weighted average=12,826

The MTTFs for PCU, reduction gear, planetary gear, MG1, and MG2 are calculated

based on the MTTF of engine and data from Ping et al. (2010). The authors present

the experimental data of mean time between failures (MTBF ) of main components in

the hybrid electric transit bus. We assume that proportional relation of MTBF between

main components in the hybrid electric transit bus is the same with the proportional

relation of MTTF of main components in the hybrid system we analyzed in this paper.

For example, we can calculate the MTTF of PCU by using equation (2.16):

MTBF of Engine

MTBF of PCU
(in hybrid electric transit bus)

=
MTTF of Engine

MTTF of PCU
(in hybrid system of 2004 Toyota Prius)

(2.16)

From above method and assumption, we calculate the MTTF for the mechanical system,

the electrical equipment, and the PCU in the 2004 Toyota Prius.

The mechanical system in this paper includes the wheels, planetary gear, and reduc-

tion gear; the electrical equipment includes MG1 and MG2. But Hu et al. only list the

MTBF of the mechanical system and electrical equipment. We divide the MTTF of the

mechanical system and electrical equipment to obtain the MTTF for each component.

Except for the HV battery, the main components in this paper follow the exponential

distribution. We assume a failure in one component in the mechanical system results in

failure of the entire mechanical system. According to the property of exponential distri-
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bution, the MTTF of wheel, the MTTF of planetary gear, and the MTTF of reduction

gear can be obtained from the equation (2.17).

1

MTTF of wheel
+

1

MTTF of planetary gear
+

1

MTTF of reduction gear

=
1

MTTF of mechanical system

(2.17)

We assume the MTTF of each of these three components are identical. In a similar way,

the MTTF of MG1 and the MTTF of MG2 can be derived.

2.3.2.2 HV Battery

The 2004 Toyota Priuss battery is a nickel metal hybrid battery. To our knowledge, no

official data on the lifespan of this HV battery exists. The Panasonic EV Energy Ni-MH

handbook (PanasonicCorporation, 2016) claims this kind of battery can be recharged

over 500 times, but translating this recharging information to the lifetime of the HV

battery requires additional data, which is not available.

Given this lack of reliable data on the lifetime of the HV battery, we estimate the

probability that the HV battery fails each year based on a survey of the number on the

number of miles the HV battery lasts. An online poll conducted in PRIUSchat asked

users how many miles their HV battery lasted (PriusChat, 2013). Although this survey

is not scientific and there is no way to verify if the users are truthful, the survey provides

some information that can be used to estimate the reliability of a HV battery. Table 2.3

shows the result of the survey of hybrid battery, and we use 12,826 miles per year to

estimate the failure in terms of number of years.

We use the Bayesian approach described in Subsection 2.3 to estimate the reliability of

the HV battery and assume a Weibull distribution for failure. The likelihood functions

come from equations (2.6) and (2.7). If the battery fails before 100,000 miles (or 7.8

years), the likelihood function is P (t ≤ 7.8) = F (7.8|β, λ). If the battery fails between
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Table 2.3: Survey of Battery Performance

How is your Gen 2 Prius (2004-2009) Hybrid Battery Doing?
Failed below 100,000 miles (7.8 years) 6 vote(s)
Failed between 100,000 and 150,000 miles (7.8 years-11.7 years) 8 vote(s)
Failed between 150,000 and 200,000 miles (11.7 years-15.6 years) 5 vote(s)
Failed at over 200,000 miles (15.6 years) 1 vote(s)
Has not failed below 100,000 miles (7.8 years) 42 vote(s)
Has not failed between 100,000 and 150,000 miles (7.8 years-11.7 years) 37 vote(s)
Has not failed between 150,000 and 200,000 miles (11.7 years-15.6 years) 19 vote(s)
Has not failed at over 200,000 miles (15.6 years) 8 vote(s)

100,000 and 150,000 miles (7.8 and 11.7 years), we use the likelihood function in equation

(2.6) where t2 = 11.7 and t1 = 7.8. The formula is similar for when the battery fails

between 150,000 and 200,000 miles (11.7 and 15.6 years). If the battery fails over 200,000

miles (15.6 years), we use the likelihood function in equation (2.7) where t3 = 15.6. If

the battery has not failed below 100,000 miles (7.8 years), we use equation (2.7) where

t3 = 7.8. If the battery has not failed between 100,000 and 150,000 miles (7.8 and 11.7

years), that means the battery has not failed before 11.7 years. Thus, we use equation

(2.7) where t3 = 11.7. Equation (2.7) is similarly used when the battery has not failed

between 150,000 and 200,000 miles (11.7 and 15.6 years).

The prior distributions for β and λ are gamma distributions where the parameters for

the gamma distributions are chosen so that the gamma distribution resembles a uniform

distribution. We use WinBUGS to run the Gibbs sampler and run 3 separate chains

each with a burn-in phase of 1500 samples. The burn-in phase means that first 1500

samples are discarded. After the burn-in phase, we record 1000 samples for each chain.

Figure 2.13 depicts the 3 chains for (a) β and (b) λ. With 3 chains, we have a total of

3000 samples. The different lines represent different chains or runs in the simulation.

The mean value for β is 2.808 with a standard deviation of 0.3487. The mean value for

λ is 4.284×10−4 with a standard deviation of 3.333×10−4. We use the 3000 samples for β

and λ with the Weibull distribution to simulate failure times for the battery. Figure 2.14
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(a) Samples of β

(b) Samples of λ

Figure 2.13: Gibbs sampler results for β and λ

depicts the histogram of this simulation.

The MTTF for this simulation is 16.2731 years. As Figure 2.14 shows, the HV

battery has a 0.2647 probability of lasting more than 20 years and a 0.0247 probability

of lasting more than 30 years. These results seem to overestimate the lifetime of a battery.

Although a battery could last 20 years, it seems very unlikely that a battery will last 30

years or more. Thus, we desire a method that will use the survey and limit the results

to lifetimes that appear more reasonable.

We set an upper limit during the Bayesian optimization by assuming that the battery

never lasts longer than a predefined number of years. Most vehicles fail before 300,000

miles, and we set 300,000 miles, or 23.39 years, as the upper bound for the four likelihood

equations without an upper limit. Running 3000 samples in the Bayesian optimization

reveals that the mean value of β is 3.845 with a standard deviation of 0.3571and the

mean value for λ is 5.333 × 10−5 with a standard deviation of 1.071 × 10−4. Using the
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simulated values of β and λ with the Weibull distribution reveals the follow histogram

for the lifetime of the battery in Figure 2.15. The MTTF of this distribution is 13.70

years with only a 0.0637 probability the battery lasts longer than 20 years.

Figure 2.14: Histogram of Failure Time

We repeat the Bayesian optimization simulation with an upper limit of 250,000 miles

(19.49 years) and 200,000 miles (15.59 years). Figure 2.16 depicts the time to failure

for the battery using a limit of 19.49 years. Running 3000 samples in the Bayesian

optimization reveals that the mean value of β is 4.575 with a standard deviation of 0.4607

and the mean value for λ is 1.028×10−5 with a standard deviation of 1.226×10−5. Using

the simulated values of β and λ with the Weibull distribution predicts the distribution

of the battery lifetime in Figure 2.16. The MTTF of this distribution is 13.11 years with

only a 0.0150 probability the battery lasts longer than 20 years.

Figure 2.17 depicts the time to failure with a limit of 15.59 years. Running 3000

samples in the Bayesian optimization reveals that the mean value of β is 5.671 with a

standard deviation of 0.7739 and the mean value for λ is 2.059 × 10−6 with a standard

deviation of4.442 × 10−6. Using the simulated values of β and λ with the Weibull dis-

tribution reveals the follow histogram for the lifetime of the battery in Figure 2.17. The
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Figure 2.15: Histogram of Failure Times With Upper Limit of 300,000 Miles

MTTF of this distribution is 12.06 years with a 0 probability the battery lasts longer

than 20 years.

Table 2.4 displays the results on the reliability of the HV battery for different upper

limits. We need to determine which probability distribution is the most reasonable.

The average age of vehicles in the United States is 11.5 years (Gardner, 2015), which

suggests that perhaps we should choose a smaller upper limit so that there is close to a

0.5 probably the battery fails before 11.5 years. However, the average age of the vehicle

does not really explain how long a battery will last because many factors influence why

a person disposes of a vehicle and purchases a new one.

Table 2.4: Probability that HV Battery Fail Before a Given Time Period

Upper Bound P(1 year) P(5) P(10) P(15) P(20)
No upper bound 0.0003 0.0207 0.1793 0.4473 0.7353
300,000 miles 0.0003 0.0167 0.1877 0.6150 0.9363
250,000 miles 0 0.0100 0.1780 0.7007 0.9850
201,000 miles 0 0.0060 0.2083 0.8860 1.0000
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Figure 2.16: Histogram of Failure Times With Upper Limit of 250,000 Miles

Selecting 250,000 miles, or 19.5 years, as the upper limit seems most reasonable to

us. The MTTF is 13.1143 years and there is only a 0.0150 probability the battery will

last longer than 20 years. (Even though the limit is 19.5 years, a battery can last longer

than 19.5 years. The upper limit assumes that a battery has not lasted longer than 19.5

years, but it is still possible a battery could last longer than 19.5 years.)

2.3.3 Results

Due to limited data of the lifetime of the HV battery, we assess the reliability of the

HV battery by using Bayesian approach. The Gibbs sampler allows us to estimate pos-

terior the posterior distribution, which are used to model the failure of the HV battery.

The probability of failure for the HV battery in a given year can be obtained from the

simulation results. The other main components are standard components. We assume

the reliability of a standard component at specific time follows the exponential distri-

bution. The parameter of the exponential distribution is calculated from the MTTF

of each component. The probability of failure of a standard component in a given year



www.manaraa.com

29

Figure 2.17: Histogram of Failure Times With Upper Limit of 200,000 Miles

is calculated from equation (2.3). Table 2.5 shows the MTTF and the probability of

failure for each of the main components. P (t) represents the probability a component

fails within t years.

The Boolean algebraic equations in Section 3.1 shows the logical relation for each

operation modes failure. We use the probability of failure for the main components in

Table 2.5 with the Boolean algebraic equation for each operation mode to calculate the

probability of failure for different operation modes at specific times. Table 2.6 depicts

the probability of operation failure at specific time. Figure 2.18 displays the probabilities

of failure for the entire hybrid system.

These calculations estimate that a hybrid vehicle has a 0.9985 probability of failing

within 5 years, and Figure 18 shows that the probability of failure increases dramatically

in the first few years. From Table 5, the probabilities the HV battery and engine fail are

smaller than the other main components. The PCU has highest probability of failure,

and the MTTF of the PCU is 2.682 years. The PCU consists of three inverters and
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Table 2.6: Probability of Operation Failure

Scenario of Failure P(1 year) P(5) P(10) P(15) P(20)
Start and low to mid-range speeds 0.5863 0.988 0.9999 1 1
Driving under normal conditions 0.4992 0.9685 0.999 1 1
Sudden acceleration 0.3373 0.9575 0.9989 1 1
Deceleration or Braking 0.5863 0.988 0.9999 1 1
Battery recharging 0.5479 0.9813 0.9997 1 1
Hybrid System totally fails 0.7284 0.9985 1 1 1

Figure 2.18: Probabilities of Failure of Entire Hybrid System

two converters (Emadi et al., 2008). Song and Wang (2013) show that these sensitive

power electronic component can influence the whole hybrid systems reliability. The

links between circuit elements are the most vulnerable link. The redundancy of most

converters is not considered in the PCU of the hybrids. If one of these converters fails

to work, it could lead to the total failure of PCU. Therefore, in our results the reliability

of the PCU may not be as good as other main components.

Table 2.6 shows the probabilities of failure under the different operational scenarios

and for the entire hybrid system. Starting or driving at low to mid-range speeds and
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Table 2.7: Probabilities of Operation Failure Due to the Engine or HV Battery

Scenario of Failure P(1 year) P(5) P(10) P(15) P(20)
Start and low to mid-range speeds 0 0 0.0103 0.178 0.7007
0.985
Driving under normal conditions 0 0.10092 0.412521 0.654869 0.797243
0.880884
Sudden acceleration 0 0 0.004249 0.116567 0.558628
0.867671
Deceleration or Braking 0 0 0.0103 0.178 0.7007
0.985
Battery recharging 0 0.10092 0.418572 0.716302 0.939315
0.998213
Hybrid System totally fails 0 0.10092 0.418572 0.716302 0.939315
0.998213

deceleration or braking have the highest probability of failure because these modes rely on

the PCU which has the single highest probability of failure. Sudden acceleration has the

smallest probability of failure, because of the redundancy built into this operation. As

can be seen from the functional block diagram (Figure 2.6) and fault tree (Figure 2.7),

there are two power sources-electric power and mechanical power-that can drive the

wheels. Even if one power source cannot provide power, the other one still can work.

2.3.4 Modified Reliability Model Based on HV Battery and Engine

The probability of failure of the hybrid vehicle is so high because the PCU has such

a large probability of failure and because the model assumes that components are not

fixed or replaced. Since the reliability of the hybrid vehicles electric and mechanical

components are based on data from Ping et al. (2010) which was for a hybrid electric

bus, it might not be accurate. The engine and the HV battery are the two most important

components in the hybrid system and the power source of the hybrid vehicle. Since the

accuracy of the failure of the other components is suspect, we next consider only the

failure of the engine or the HV battery. Table 2.7 and Figure 2.19 depict the probability

of failure under different operation modes if only the HV battery or engine fails.
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Figure 2.19: Probabilities of Failure of Entire Hybrid System Due to the HV Battery or
Engine

If we assume the mechanical system, electrical equipment, and PCU, the probability

the hybrid vehicle fails within 5 years is 0.42 compared with 0.999 in the original model.

The probability the hybrid vehicle fails within 15 years is 0.94. Alternatively, this mod-

ified model could reflect the ability to repair or replace components in the electrical

equipment, mechanical system, and PCU. It appears more reasonable that the hybrid

vehicle will have a reliability of more than 0.5 during its first 5 years of its useful life.

2.4 Conclusions

Based on existing literature, this paper first presents an overall reliability model for

the hybrid vehicle systems by constructing reliability block diagrams and fault trees

for different operation modes, such as normal operation, sudden acceleration, braking,

and battery recharging. We translate the fault tree to a Boolean algebraic equation

describing failure for the different scenarios. The standard components reliabilities follow

an exponential distribution, and we calculate their probabilities of failure based on the



www.manaraa.com

34

MTTF . Since the HV battery has limited data, we develop a unique Bayesian model to

incorporate survey data to calculate the batterys reliability.

Several other components in a vehicle in addition to the eight components examined

in this paper could also fail. Other components may fail and need to be replaced, such

as hoses, clamps, and brake pads. Proper maintenance can improve the reliability of a

hybrid vehicle. These components are not included in our model. The better estimate

of the reliability appears to come from the reliability model that only includes the HV

battery and the engine, which raises doubts about the failure probabilities for the other

components. Future work can undergo better data collection in order to obtain a better

measure of reliability for all the components.

Other factors not considered in this paper may also impact a vehicles reliability.

Temperature could influence the reliability of the HV battery. Tesla Motors has reported

many incidents of spontaneous combustion in their vehicles due to unstable performance

of battery (Lambert, 2016; Byrne, 2016). Extreme temperature environment can cause

failure in battery operation. Moisture environment can result in electrical short circuit,

which generate and release heat, burning the line in the PCU. Electrical components are

small in size and highly sensitive to the environment factors like temperature, exposure

thermal shock, and moisture exposure.

Despite these limitations and assumptions, the model presented herein provides a

systematic framework for analyzing and estimating the reliability of a hybrid vehicle.

The Bayesian analysis that integrates survey data to assess the probability of failure for

the HV battery represents a unique method to measure the reliability. It appears that

the HV battery is quite reliable and more reliable than the engine, whose lifespan is

estimated at 120,000 miles. The reliability of the battery and engine lead to a vehicle

whose reliability exceeds 0.5 for the first 5 years of its life and whose reliability is 0.28

in year 10. Future research can undertake more careful studies of the engine, the HV

battery, and the other components to understand if the inputs used for this study are
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accurate. A more complete model could also consider proper maintenance of parts and

determine how that affects the vehicles reliability.
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CHAPTER 3. SUPPLY CHAIN RISK ANALYSIS USING DYNAMIC

FAULT TREE

3.1 Introduction

Supply chains are becoming more vulnerable and sensitive because of globalization,

complexity, and occurrence of various risk events. There are several risk categories of a

supply chain, such like disruptions, delays, systems risk, forecast risk, intellectual prop-

erty risk, procurement risk, receivables risk, inventory risk and capacity risk (Chopra

and Sodhi, 2004). Besides, there are a plenty of events could make threats happen, such

as natural disaster, war, and terrorism, inflexibility of the supply source, information

infrastructure breakdown and so forth. On March 2011, the earthquake and tsunami

destroyed supply chains of over 27,000 businesses in Japan. Only a few of businesses

recovered one year later (RebuildingTohoku, 2017). On March 17, 2000, a fire at a plant

owned by Royal Philips Electronics was caused by lightning, which damaged millions of

microchips. Ericsson, a major customer of Royal Philips Electronics, lost 400 million

dollars due to the crisis. For another example, Boeing tries to reduce cost and expect to

shrink the 787s development time by outsourcing. Superficially, outsourcing can reducing

cost because of the low-cost labor. However, some components outsourced may not be

assembled together. So the outcome is disappointing, and the development time of 787s

is extended. Boeing does not win the market share from Airbus and spend more money

(Denning, 2017). All these events demonstrate the importance of management of supply

chain risk. The key to making strategies is having a comprehensive understanding and a

thorough analysis of supply chain risk. By identifying and modeling risks, we can access
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severity of risks. According to the results of assessment and various sources of risks,

proactive and mitigating strategies can be made to response to potential risks in the fu-

ture (Sodhi, 2014). Therefore, Supply chain risk analysis is a significant field of supply

chain risk management, which enables us to recognize the reasons of risk occurring and

find the main reasons. Finally, we can choose better strategies to reduce risk (Sheffi

et al., 2005).

In general, to overcome vulnerability and increase the resilience of supply chain, one

supply chain may have multiple suppliers. Under the future uncertainty, the cost objec-

tion function models for single, two, and multiple suppliers are developed (Parlar and

Perry, 1996). Actually, the cost of supply chain is affected by the risk which may be

reduced by using proper number of suppliers. The method used to choose the number

of suppliers are designed to mitigate the risk of IT outsourcing (Currie, 1998). Besides

having multiple suppliers in supply chain, inventory also can improve the resilience of

supply chain. If agile supply chains try to compete in volatile markets, creating redun-

dancy and responsiveness is very helpful (Christopher, 2000). In order to response to

volatile markets, inventory should be concluded in supply chain. The accuracy of in-

ventory information can impact the supply chain performance (Fleisch and Tellkamp,

2005), so the stochastic inventory systems and vendor managed inventory are proposed

(Corbett, 2001; Waller et al., 1999; Dong and Xu, 2002). In a word, inventories play the

role as assurance of a supply chain (Bogataj and Bogataj, 2007).

In addition, the information system also plays a significant role in a supply chain.

The main work of information system is real-time sharing and processing production

information within a supply chain. Information system realizes closer coordination be-

tween partners in supply chain (Wu et al., 2006). In the above Royal Philips Electronics

example, another major customer, Nokia just had a little loss during the crisis due to

the quick response capability. Initially, the information of order delayed were shown on

the computer screens at headquarter of the Nokia. Later, managers of Nokia knew order
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delayed and formulated solving methods to move chip orders at the first time. Once the

information system breakdown occurs, the emergent information may not be captured

and shown in time. Hence, more information sharing makes a great improvement of

performance of the supply chain. The supply chain can seek lower risk by adjusting in-

ventory level or coordinating different components (Yu et al., 2001; Lee et al., 2000). For

further flexibility of supply chain, information technology and internet can be applied

on information system design (Gunasekaran and Ngai, 2004; Pereira, 2009; Williamson

et al., 2004).

In this paper, we analyze the main-backup supply chain and the mutual-assistance

supply chain. The main-backup supply chain has a main supplier, a backup supplier, in-

formation system and inventory. When the main supplier operates normally, the backup

supplier does not work until the main supplier fails. If both two suppliers cannot work,

the inventory will be used. The information systems failure can lead to unavailability

of the backup supplier. The mutual-assistance supply chain has two suppliers and in-

formation system, and does not consider the inventory. Different from the main-backup

supply chain, two suppliers of this supply chain work simultaneously. If one supplier

has a failure, the other supplier will help it out by increasing the production quantity or

production rate. Once the information system fails to work, either one of two suppliers

is unable to give assistance.

The fault-tree analysis is a useful technique of system reliability modeling, and it can

show the logic relationship of the input events and output event. Fault-tree analysis is a

classical tool for understanding operation processes and identifying failures in systems.

For a low volume high value supply chain, a robust method is developed to reduce the

likelihood of delays in material flow by representing the system of suppliers within a

supply chain as a fault-tree and determining the proactive optimum mitigation strategy

(Sherwin et al., 2016). However, the fault tree is unable to depict interplay between

components in a supply chain. Modern supply chain becomes more and more compli-
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cated. Whether in low volume or high volume supply chain, the interaction between

each component cannot be ignored. Therefore, dynamic fault tree (DFT) is constructed

to overcome the limitation of the static fault tree.

This paper builds reliability models for two typical supply chains by using DFT. Then

based on the function of each dynamic gate and realistic scenarios, we estimate failure

rates for each supply chain under different production scenarios and simulate delivery

time for the main-backup supply chain. Several unique contributions are made for future

supply chain risk analysis. First, we use DFT to model supply chain. Most existing works

of DFT mainly focus on reliability modeling for complex engineering system. Second, an

innovative dynamic gate, mutual-assistance gate are created for DFT modeling. Third,

for supply chain risk analysis, we calculate both failure rate and delivery time. Finally,

two different production scenarios, low volume production and high volume production,

are simulated by using different simulation methods.

The rest of this study is organized as following ways: Section 2 reviews the literature

in supply chain risk analysis and DFT. Section 3 introduces five dynamic gates and

presents the dynamic fault trees we build of two supply chains. Section 4 develops

different simulation methods for simulating different scenarios of two supply chains. Then

we show the simulation results. Finally, conclusions and future work are presented in

Section 5.

3.2 Literature Review

The frequency of nature disasters and man-made accidents increases exponentially

during the past decades in industrialized countries (Coleman, 2006). Nature disasters,

terrorism and some unpredictable events all give rise to the risk of Supply chain (Stewart,

1995; Brown et al., 2006; Chopra et al., 2007). Under this background, supply chain risk

has been extensively studied in the existing literature. The supply chain risk is usually

analyzed from a qualitative view or a quantitative view. From a qualitative point of view,
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the probability of occurrence for a risk event is assessed by different levels, such like rare

event and likely event (Raj Sinha et al., 2004). The severity of risk also be evaluated

from a qualitative view, such like low risk and high risk (Norrman and Jansson, 2004).

Some strategies and approaches are developed to help decision making (Giannakis and

Louis, 2011; Manuj and Mentzer, 2008). Meanwhile supply chain risk mitigation methods

also are proposed (Giunipero and Aly Eltantawy, 2004; Christopher and Lee, 2004). For

quantitative risk analysis, available past data is used to estimate the probability of risky

events (Tuncel and Alpan, 2010; Kleindorfer and Saad, 2005). In addition to calculating

probability, systematic strategies of managing and mitigating threats have been provided

(Tomlin, 2006; Klibi et al., 2010). Other extensive works have been done in the area of

management of disruption risk by inventory, facility location and empirical data (Cui

et al., 2010; Schmitt and Singh, 2009; MacKenzie et al., 2014, 2012).

Not only reliability analysis of engineering system but also supply chain risk analysis

can use fault tree (Aqlan and Lam, 2015). In the supply chain risk identification stage,

most tools are qualitative. Fault tree analysis is not used a lot in this field. Some

opportunities may exist (Hunter, 2009). In the area of predicting supply chain risks,

“Data Mining”and “Failure Mode Effect Analysis (FMEA)”are popular methods. During

FMEA processes, when some critical effects are found, fault tree analysis helps to analyze

causes from the lowest level (Zsidisin and Ritchie, 2008). From existing literature, we

only find Sherwin et al. (2016) represent a system of suppliers within a low volume

high value supply chain as a fault tree to identify risks and make mitigation strategy. In

their paper, when they build fault tree, they have not considered the dependency and

interplay between basic events which triggers the risk of supply chain. However, in the

modern supply chain, production information sharing and other interactions take place

at any time. One static fault tree could not integrate diverse failure modes by itself.

By comparison, DFT can expresses interplay which changes over time. However, a wide

body of research using DFT focuses on reliability analysis of a complex engineering
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system or computer system, such as aircraft power supply system, fault-tolerant flight

control system, floating offshore wind turbine (Huang et al., 2012; Yiping and Minghua,

1999; Zhang et al., 2016). As a result, a potential research area of supply chain risk

analysis using DFT exists. In this paper, we choose to use DFT to model supply chain

risk.

There are two main methods used to solve dynamic fault trees, analytical method

and simulation method. For analytical method, the Markov models are commonly used

to solve DFT. Boudali et al. (2007) present how to use input/output interactive Markov

chains to solve dynamic fault trees. However, the Markov model is complicated and time

consuming when the number of basic events of DFT is growing. Because the number of

states and transition rates increase exponentially when the number of basic events in-

crease. Therefore, an efficient approximate Markov model is suggested (Yevkin, 2015).

But this efficient method cannot ensure good accuracy of calculation. Some other analyt-

ical methods are developed to solve DFT. Generating the minimal cut set or sequence use

a zero-suppressed binary decision diagrams (Tang and Dugan, 2004; Cui et al., 2013).

Besides using minimal cute sets or sequence, a new Bayesian network approach and a

tool which can translate DFT to Bayesian networks are created (Boudali and Duga,

2005; Montani et al., 2006). Compared with analytical method, simulation method can

conquer all limitations of analytical method. Monte Carlo simulated-based approach is

presented to solve DFT (Rao et al., 2009; Dai et al., 2011; Zhang and Chan, 2012).

Simulation method is utilized to solve the dynamic fault tree because of the following

reasons. First, it is difficult to include test and maintenance information in Markov mod-

els. Second, when we generate minimal cut set for dynamic fault tree, we have to make

independent assumption which is not accurate for complex system. Finally, simulation

method can deal with non-exponential distributions for time to failure and repair of basic

components. In order to simplify simulation processes, MatCarloRe, an integrated fault

tree and Monte Carlo Simulink tool has been developed. But this tool only handles with
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exponential distribution, Weibull distribution and constant distribution (Manno et al.,

2012).

In this article, we employ the idea of reliability analysis by using DFT on supply

chain risk analysis. Through building the DFT of supply chains, the logic relationship

between suppliers, inventory and information systems is represented by dynamic gates.

The probability of failing to produce product in supply chain and the actual delivery

time are estimated by different simulation methods.

3.3 Model

This paper constructs different dynamic fault trees for two typical supply chains,

the main-backup supply chain and the mutual-assistance supply chain by using four

traditional dynamic gates and a new innovative dynamic gate. After this, the failure rate

of each supply chain is calculated for two production scenarios, manufacturing one unit

of product and manufacuting several units of product. We also obtain overall delivery

time and the total units produced for each supply chain from simulation results.

3.3.1 Main-Backup Supply Chain

We consider a main-backup supply chain in which a single supplier provides product

to a firm. During the production process, for the main supplier, it is inevitable to have

a failure due to disruptions. Natural disasters, such as earthquakes or floods, or human

errors, such as improper operations, may cause a disruption (Li et al., 2013; Rose et al.,

2011; Staw, 1980). The model assumes an information system automatically relays the

status of the main supplier to its customer, the firm. After the firm receives information

that the supplier has production difficulties, the firm contacts a backup supplier who can

deliver product. The backup supplier may also experience failures, however. The firm

may also have inventory to help meet the supply difficulties. The information system

could also fail to inform the firm of the main suppliers difficulties. If the information
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system fails to delivery messages, the failure problems in supply chain will not be tackled.

This model can be applied to a low volume or high volume supply chain. In a low volume

supply chain, such as airplane manufacturing or the nuclear power industry, the supplier

only needs to produce a single unit of product. For a high volume supply chain, such as

a food supply chain or the automobile industry, several units of product are required.

The static fault tree consists of AND, OR gates. Dynamic fault tree introduces

dynamic gates in reliability modeling. Normally, a dynamic fault tree usually uses static

gates and dynamic gates in combination like what we have done in this paper. The

special use of dynamic gates is modeling interactions in a complex system for reliability

analysis. Dynamic gates are the priority AND (PAND) gate, the sequence enforcing

(SEQ) gate, the functional dependency (FDEP) gate and the spare (SPARE) gate. For

example, it is not enough that all events fail together to make PAND gate fail. PAND

gates failure is sequence-dependent. Figure 3.1 shows all dynamic gates (Rao et al.,

2009).

Figure 3.1: Dynamic Gates

In this model, we consider one main supplier, one backup supplier, information sys-

tem, and inventory in the supply chain. In Figure 3.2, a dynamic fault tree of this model

has one PAND gate, which has two basic events, the information systems failure and the

main suppliers failure. The trigger event of functional dependency gate (FDEP) is the

information systems failure, and the dependent event is the backup supplier. The princi-

pal component is the main supplier, and the spare component is the backup supplier in
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standby or spare gate (SPARE). The three basic events for the sequence enforcing gate

(SEQ) are the main suppliers failure, the backup suppliers failure and inventorys failure.

Event A represents the information systems’s failure. Event B represents the main sup-

plier’s failure. Event C represents the backup supplier’s failure. Event D represents the

inventory’s failure

Figure 3.2: Dynamic Fault Tree for Main-backup Supply Chain

The PAND gate captures a failure of the output event when all basic events have

failed in a pre-assigned order (from left to right in graphical notation). In the supply

chain model, if the information system fails (event A) before the main supplier fails

(event B), the information system will not alert the firm of the main suppliers difficulty,

which means the backup supplier will not be alerted to replace the production. However,

if the main supplier fails before the information system fails, the information system will

function correctly to alert the firm and the backup supplier. The PAND gate captures

this relationship because the PAND gate only induces failure if A fails before B, but
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the system functions if B fails before A. The FDEP gate depicts when the trigger event

happens the dependent events are supposed to occur. In this model, if the A happen,

the backup supplier will fail to be activated by A. The backup suppliers failure (event

C) is triggered by occurrence of A, which relationship is represented by FDEP gate. The

SPARE gate can fail only when the number of surviving components is less than the

minimum required (Manno et al., 2012). The SPARE gate models one or more principal

components that can be replaced by one or more redundant components. In this supply

chain, when information systems work normally, if the main supplier fails to produce

product, the backup supplier will be activated to work to replace the main supplier. If

both the main supplier and the backup supplier cannot produce production, the supply

chain will get a failure. At least one supplier can work, then there is no failure in supply

chain. The SPARE gate captures this relationship of the main supplier and the backup

supplier. Therefore, all of three dynamic gates, the SPARE gate, the FDEP gate and the

PAND gate, have failed simultaneously, which will give rise to supply failure, so there

is a AND gate connected this three dynamic gates. In reality, the inventory is always

used as a redundant supplier in a supply chain. We use SEQ gate to represent that all

basic events have to fail in a particular order. Other different failure sequence could

never happen. In this model, if the main supplier fails, and the information system still

works, then the backup supplier will begin to work to support the supply chain. Only

after the backup supplier fails, we could use inventory to provide products to the end of

supply chain. No matter whether the AND gate fails or the SEQ gate fails, there must

be failure in the supply chain. There is OR gate connecting the AND gate and the SEQ

gate in the dynamic failure tree.

3.3.2 Mutual-Assistance Supply Chain

Companies often have two suppliers to manufacture the same product simultaneously

(Sculli and Wu, 1981; Chung et al., 2010). If one supplier fails, the other supplier may be
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able to increase its production quantity or production rate. In a closely integrated supply

chain, an information system could provide information about the status of each supplier

to the firm and to each other. We name this relationship a mutual-assistance supply

chain. The unique relationship of two suppliers is mutual help and simultaneous work.

The mutual-assistance supply chain could also apply to two facilities owned by the same

company that produce the same product. Since a single company directs both facilities,

if one facility encounters disruption difficulties, the other facility could quickly be alerted

and increase its production. In this supply chain, we do not know the failure sequence

between two suppliers. Because the specific failure sequence is randomly generated from

simulation. It is hard for us decide a particular order of SEQ gate when two suppliers

and inventory are considered. We simplify the problem in the mutual-assistance supply

chain by not including inventory.

If both suppliers manufacture a single unit for a low volume supply chain, the two

suppliers work independently to produce same product, but each supplier might have a

different due date. If one supplier fails, the second supplier will not be able to change its

production plan if the information system fails to relay the failure of the first supplier

to the second supplier. The dynamic fault tree for the mutual assistance supply chain is

constructed according to different manufacturing scenarios and the structure of supply

chain.

Within a dynamic fault tree, the SPARE gate is used to model the relationship

between the main supplier and the backup supplier. In the prior model of the main-

backup supplier, if the main supplier fails, the backup supplier will start to work, but

the two suppliers in the mutual-assistance supply chain work simultaneously. Other

dynamic gates cannot model the relationship between the two suppliers either. We

design a new dynamic gate, named the mutual-assistance gate (MA), to represent the

relationship between suppliers. The MA gate is shown in Figure 3.3.

The MA gate can fail only when both basic events fail. When one of basic event
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Figure 3.3: Mutual-Assistance Gate (MA)

fails, the likelihood of failure of the other basic event will increase because the supplier

is increasing its production quantity or production rate.

In this model, we consider two suppliers and information system in the supply chain.

In Figure 3.4, the dynamic fault tree has one PAND gate with three basic events; the

failure of the information system (event A), the failure of one supplier (event B), and

the failure of the other supplier (event C). Similar to the main-backup supplier model, if

the information system fails before either supplier fails, then the operating supplier will

not receive the updated status of the failed supplier. This is modeled using the PAND

gate, but since both suppliers are working simultaneously, two suppliers are connected

via an OR gate. The FDEP gate is triggered by the information systems failure, and

the dependent events are two suppliers failures. These two suppliers are the backup

suppliers to each other in MA gate. All three dynamic gates, the MA gate, the FDEP

gate and the PAND gate, need to fail in order for the firm to fail to receive its product,

and an AND gate connects these three dynamic gates. In Figure 3.4, event A represents

the information system’s failure. Event B represents one supplier’s failure. Event C

represents the other one supplier’s failure.

3.4 Illustrative Example

As is typical with dynamic fault trees, we use simulation to measure the reliability

of the supply chain. The number of times an event happens is counted to measure the

reliability (Verma et al., 2010). We use different simulation methods for the two different
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Figure 3.4: Dynamic Fault Tree for Mutual-assistance Supply Chain

models (main-backup supply chain and the mutual-assistance supply chain) to calculate

the failure rate.

3.4.1 Simulation Methods for Main-Backup Supply Chain

A state time diagram helps to illustrate how failure occurs for the main-backup supply

chain producing one unit of product. The time between each failure for the supply chain

can be calculated from the state time diagram. The state time diagram is generated from

the dynamic fault tree and failure rate of each basic event in the fault tree. If the supply

chain produces several units of product, we use the simulation to calculate the number

of units of product that are provided and the frequency in which the product satisfied

requirements. We also calculate the time to delivery in order to capture situations in

which a supplier fails and recovers but may deliver product late.

3.4.1.1 Manufacturing One Unit of Product

In the main-backup supply chain, the state time diagram illustrates when failure

occurs in the supply chain. Available and unavailable status of each component in
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supply chain can be visually depicted by up and down states in state time diagram. In

our model, if the information system (A) fails before the main supplier (B) fails, it will

cause the failure of the PAND gate. Otherwise, it will not cause any failure. The state

time diagram of the PAND gate is depicted in Figure 3.5.

Figure 3.5: State Time Diagram of PAND Gate

In the SPARE gate, for the active component, the main supplier, we generate time

to failure and time to repair according to probability distributions. The spare compo-

nent, the backup supplier, has different failure rates depending on the state of the main

supplier. When the main supplier does not fail, the failure rate of the backup supplier

is not affected by main supplier. If the main supplier fails, the backup supplier will be

activated, and it could fail due to attempting to increase its production rate. We assume

the probability of failure of the backup supplier (C) follows an exponential distribution

with a failure rate equal to αλ (0 < α < 1) given the main supplier (B) operates nor-

mally. The failure rate of the backup supplier equals λ given the failure of the main

supplier. The failure rate of the backup supplier increases if the main supplier fails. The

state time diagram of the SPARE gate is depicted in Figure 3.6.

In the FDEP gate, the trigger event is information systems failure (A), and the

dependent event is the backup suppliers failure (C). When the information system is in

the down state, the backup supplier must be in the down state. If the trigger event does



www.manaraa.com

50

Figure 3.6: State Time Diagram of SPARE Gate

not occur, the state of the dependent event cannot affect the trigger event. The state

time diagram of the FDEP gate is depicted in Figure 3.7.

Figure 3.7: State Time Diagram of FDEP Gate

In the SEQ gate, the basic events must fail in a specific order. In our model, the main

supplier fails first (B), the backup fails second (C), and inventory fails third (D). The

simulation uses the failure rate λ to generate times to failure based on the exponential

distribution. First we generate time to failure (TTFB) and time to repair (TTRB) of

the main supplier. If the main supplier fails, the backup supplier begins production for

the firm. We generate time to failure (TTFC ) and time to repair (TTRC) of the backup

supplier. If the backup supplier fails, inventory could be used. We generate time to
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Table 3.1: Simulation Parameters

Parameter Value
Total simulation time 86400 hours (= 10 years)
Mean time to failure of each component 200 hours
Mean time to repair of each component 48 hours
α 0.5

failure (TTFD) and time to repair (TTRD ) of inventory. If the three basic events of the

SEQ gate are in down states, it will a failed state of the SEQ gate.

The dynamic fault tree of the main-backup supply chain connects the SPARE gate,

the FDEP gate, and the PAND gate via an AND gate. A failure only occurs if there is

a failure in PAND, the FDEP, and the SPARE gates. As depicted in Figure 3.2, the OR

gate connects failure from the information system and backup supplier relationship with

the SEQ gate that orders the main supplier, backup supplier, and inventory (Figure 3.8).

Since this is a notional example to demonstrate the applicability of the dynamic fault tree

to supply chain risk, we assume the probability of failure of each component in supply

chain follows identical exponential distributions. Table 3.1 shows simulation parameters

for each component in supply chain.

From the simulation, the supply chain exhibits complete failure 21 times over these

10 years. There are 10 times caused by AND gate. The AND gate connects PAND

gate, FDEP gate and SPARE gate. The AND gate fails, which means all there dynamic

gate have failures at the same time. There are 11 times caused by SEQ gate. The SEQ

gate has a failure, which means three basic events have common failure time. Figure 3.9

depicts a histogram of time to failure in this main-backup supply chain.

The mean time to failure of the main-backup supply chain is 3968 hours which is

166 days. The standard deviation is 3341 hours which is 140 days. The shortest time to

failure is 9 hours which is less than one day. The longest time to failure is 11540 hours

which is 481 days.
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Figure 3.8: State Time Diagram of SEQ Gate

3.4.1.2 Delivery Time of Manufacturing One Unit of Product

We are interested in using this simulation to calculate the delivery time for the prod-

uct. Since inventory is not delivered, we ignore the role of inventory in this section. We

only consider the failure of suppliers and the failure of information system, so we only use

a part of dynamic fault tree for analyzing, as depicted in Figure 3.10. Event A represents

the information system’s failure. Event B represents the main supplier’s failure. Event

C represents the backup supplier’s failure.

As discussed earlier, we measure the time to failure and time to repair for the two

suppliers and the information system. If the supplier fails after the standard delivery

time, the actual delivery time is equal to the standard delivery time. If a supplier fails

and then recovers, we assume the supplier can increase its production speed in order to

make up for lost time. fter a failure occurs, a supplier will increase the production speed.
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Figure 3.9: Histogram of Simulated Time to Failure

Table 3.2: Simulation Parameters

Parameter Value
Total simulation time 86400 hours (= 10 years)
Mean time to failure of each component 200 hours
Mean time to repair of each component 48 hours
α 0.5
Standard delivery time 200 hours
k 0.5

The parameter k, where 0 < k < 1, is used to represent that the delivery time will be

shortened after the supplier recover. If the time to failure of a supplier is less than the

standard delivery time, the actual delivery time is calculated by equation (3.1).

actual delivery time = time to failure + time to repair

+ k ∗ (standard delivery time− time to failure)

(3.1)

Table 3.2 shows simulation parameters for each component in supply chain. We set

the standard delivery time is 200 hours. During the total simulation time, we can get

a set of actual delivery time for each supplier. Figure 3.11 and Figure 3.12 are the
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Figure 3.10: Partial Dynamic Fault Tree for Main-backup Supply Chain

histograms of actual delivery time for suppliers.

The mean actual delivery time of the main supplier is 195 hours which is 8 days. The

standard deviation is 44 hours. The mean actual delivery time of the backup supplier is

192 hours which is 8 days. The standard deviation is 54 hours. The simulated overall

delivery time is shown in Figure 3.13. The mean actual overall delivery time is 189 hours

which is 8 days. The standard deviation is 40 hours.

3.4.1.3 Manufacturing Several Units of Product

For manufacturing several units of product, we use a different simulation method to

estimate the failure rate of the supply chain. The total simulation time is 43,200 hours

or 5 years. The duration of each trial is 720 hours, which is equivalent to one month.

The goal of this main-backup supply chain is to manufacture 1000 units, and the main

supplier can produce a maximum of 1000 units. The following steps show the logic of a

single trial:

We generate the time to failure of the information system (TTFA) and the time to

failure of the main supplier (TTFB).
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Figure 3.11: Simulated Actual Delivery Time of Main Supplier

Figure 3.12: Simulated Actual Delivery Time of Backup Supplier
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Figure 3.13: Simulated Actual Overall Delivery Time of Supply Chain

(1). If TTFB > one month, the main supplier will produce 1000 units.

(2). If TTFB < one month,

(i) If TTFA > TTFB , the backup supplier will work immediately when the main

supplier fails. If the main supplier recovers within a month, it produces 500 units. If

the main supplier does not recover within one month, the amount the main supplier can

produce is uniformly distributed between 300 and 500. We generate the time to failure

of the backup supplier (TTFC).

(a) If TTFB + TTFC < one month, the backup supplier will fail within one month,

and the number units produced by the backup supplier is uniformly distributed between

200 and 500 units. If the backup supplier fails, inventory can be used. We generate

the time to failure of the inventory (TTFD). If TTFB + TTFC + TTFD > one month,

the firm can rely on 300 units of inventory. If TTFB + TTFC + TTFD < one month,

the inventory may fail within one month, and the firm will have less than 300 units of

inventory. (b) If TTFB + TTFC > one month, the backup supplier will not fail, and it

can manufacture 500 units in a month. Inventory will not be used.
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Table 3.3: Simulation Parameters

Parameter Value
Total simulation time 43200 hours (= 5 years)
The number of trials 60
The duration of each trial 720 hours
Mean time to failure of each component 120 hours
Mean time to repair of each component 24 hours

(ii) If TTFA < TTFB, then the information system fails to alert the firm about the

main suppliers difficulty. There is a delay of 24 hours before the backup supplier works

to meet the order unfulfilled by the main supplier. The length of delay is 24 hours. If

the main supplier can recover in a month, it produces 500 units. Otherwise, the units

of product produced by the main supplier is uniformly distributed between 300 and 500.

We generate TTFC . From here, the logic is identical to that of (i)(a) and (i)(b).

We calculate the total units from the main supplier, the backup supplier, and inven-

tory in each trial. If the total units of product less than 1000 units, the supply chain

cannot achieve the goal. The simulation parameters are shown in Table 3.3. The his-

togram of the total units produced is depicted in Figure 3.14. The average number of

total units is 1137 units, and the standard deviation is 87 units. Among all trials we

simulate, five trials total units do not meet the requirement. Eight percent of trails fails

to satisfy the production goal. This simulation demonstrates how a firm can use this

dynamic fault tree to understand how likely it is that the combination of suppliers and

inventory will fail to meet the requirement of 1000 units.

3.4.2 Simulation Methods for Mutual-Assistance Supply Chain

In the mutual-assistance supply chain, we use different simulation methods for the

low-volume supply chain (one unit) and the high-volume supply chain (hundreds of

units). In the low-volume supply chain, we measure the frequency of failure and also

calculate whether or not the supply chain can meet the due date. A firm wants to know
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Figure 3.14: Histogram of Simulated Total Units

when it will receive a product. If a supplier misses the due date, the supplier has failed.

3.4.2.1 Manufacturing One Unit of Product

As depicted in Figure 3.4, the dynamic fault tree for the mutual-assistance supply

chain employs the new MA gate and does not include the SPARE and SEQ gate. The

basic events are the main suppliers failure, information systems failure and the backup

suppliers failure. The state time diagram of the MA gate has some unique properties.

In the mutual-assistance supply chain, the two suppliers are both actively producing for

the firm. At the beginning of the simulation, the two suppliers have the same failure

rate. If one supplier fails, the other suppliers failure rate will change due to assistance

relationship between two suppliers. We assume the probability of failure of each supplier

follows an exponential distribution, and the failure rate of one supplier is λ given the

other supplier is operating normally. The failure rate of a supplier is λ/β (0 < β < 1)

given the other supplier fails. The state time diagram of the MA gate is depicted in

Figure 3.15. Event B represent one supplier’s failure. Event C represents the other one

supplier’s failure.
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Figure 3.15: State Time Diagram of MA Gate

Table 3.4: Simulation Parameters

Parameter Value
Total simulation time 86400 hours (= 10 years)
Mean time to failure of each component 200 hours
Mean time to repair of each component 48 hours
β 0.5
Standard delivery time 150 hours
Upper bound of delivery time 200 hours
k 0.5

Under the situation of manufacturing one unit of product, combining state time

diagrams of the PAND gate and FDEP gate and MA gate, we can draw the compound

state time diagram of each supplier. From the compound state time diagram of a supplier,

we obtain the time to failure and time to repair. On the basis of the standard delivery

time, the time to failure and the time to repair, we estimate the actual delivery time by

using equation (3.1). By comparing the actual delivery time and upper bound of delivery

time, we judge whether one unit of product can be delivered on time and identify failures

of suppliers. Finally, based on the number of failures and duration of simulation time,

the failure rate is calculated. Table 3.4 shows the simulation parameters.

The simulated actual delivery time of B supplier is shown in Figure 3.16.

The simulated actual delivery time of C supplier is shown in Figure 3.17

The mean of actual delivery time of B supplier is 153 hours which is 6 days. The

standard deviation is 40 hours. The total failure times of B supplier is 29. The mean of
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Figure 3.16: Histogram of Simulated Actual Delivery Time of B Supplier

Figure 3.17: Histogram of Simulated Actual Delivery Time of C Supplier



www.manaraa.com

61

Figure 3.18: Histogram of Simulated Actual Overall Delivery Time of Supply Chain

actual delivery time of C supplier is 155 hours which is 6 days. The standard deviation

is 43 hours. The total failure times of C supplier is 35. The actual overall delivery time

of the supply chain is depicted in Figure 3.18. The mean of actual overall delivery time

is 143 hours which is 6 days. The standard deviation is 27 hours.

3.4.2.2 Manufacturing Several Units of Product

Under the situation of manufacturing several units of product, we take the following

simulation method. As in the previous main-back supplier model, the total simulation

time is 43,200 hours, or 5 years, and the duration of each trial is 720 hours, or one month.

If there is no failure, a supplier produce one unit of product per hour. According to the

compound state time diagram of a supplier, we calculate the duration of down state.

Besides, we know the duration of periods when one supplier is assisting the other one

supplier. We assume that a supplier does not produce any product in down state. When

a supplier is increasing production to give assistance, this supplier produced 1.5 units of

product per hour. In every trial, the total units of product produced by a supplier is
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Figure 3.19: State Time Diagram of A Trial

Table 3.5: Simulation Parameters

Parameter Value
Total simulation time 43200 hours (= 5 years)
The number of trials 60
The duration of each trail 720 hours
Mean time to failure of each component 120 hours
Mean time to repair of each component 24 hours
β 0.5

calculated by equation (3.2).

total units = 1unit/hour× duration of each trial− 1unit/hour× down time

+ 0.5× 1unit/hour× assistance period

(3.2)

Figure 3.19 represents equation (3.2).

Table 3.5 shows the simulation parameters.The simulation results for two suppliers

are shown in Figure 3.20. The mean of total units produced by two suppliers is 1318.

The standard deviation is 105 units. If the goal is manufacturing 1200 units per month

for two suppliers, 8 trials will not meet the goal. Thirteen percent of trails fail to satisfy

the production goal.



www.manaraa.com

63

Figure 3.20: Histogram of Total Units Manufactured by Two Suppliers

3.5 Conclusions

This paper constructs dynamic fault trees for supply chain risk analysis. We analyze

the main-backup supply chain and the mutual-assistance supply chain. In order to

depict complex relationship between every component of supply chain, the PAND gate,

the FDEP gate, the SPARE gate and SEQ gate are used. A key aspect of this supply

chain is the information system that can quickly relay that the main supplier is having

production difficulties. We also create a new dynamic gate, the MA gate, for the mutual-

assistance supply chain. The models are illustrated using simulation for a low-volume

supply chain and high-volume supply chain. Some simple examples are presented to

illustrate simulating process of each simulation way.

Since this paper represents the first representation of supply chain risk using dy-

namic fault trees, we may make assumptions that do not accurately represent real supply

chains. We do not include all kinds of supply chains in our study, so some more complex

relationship between basic components of supply chain may be ignored. Despite these

limitations, our study provides the dynamic model for supply chain risk analysis. Based
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on simulation results, supply chain mangers can obtain helpful information for mak-

ing better production strategies or taking some proactive work to avoid supply chain

breakdown.

For future research, we can search some real cases and apply dynamic fault trees and

simulation methods on these cases. More suppliers and more complex supply chain can

be analyzed by using our methods. By reviewing more real supply chains, we can design

some innovative dynamic gates for different interactions in supply chains. Additionally,

we can build a Simulink library and form some blocks which represent different dynamic

gates, which could make simulation more concise and efficient.



www.manaraa.com

65

BIBLIOGRAPHY

AFDC (2016). U.S. HEV Sales by Model. http://www.afdc.energy.gov/data.

Ahn, J., Jung, K., Kim, D., Jin, H., Kim, H., and Hwang, S. (2009). Analysis of a

regenerative braking system for hybrid electric vehicles using an electro-mechanical

brake. International Journal of Automotive Technology, 10(2):229–234.

Allella, F., Chiodo, E., and Lauria, D. (2005). Optimal reliability allocation under

uncertain conditions, with application to hybrid electric vehicle design. International

Journal of Quality & Reliability Management, 22(6):626–641.

Aqlan, F. and Lam, S. S. (2015). Supply chain risk modelling and mitigation. Interna-

tional Journal of Production Research, 53(18):5640–5656.

Bizon, N. (2011). A new topology of fuel cell hybrid power source for efficient operation

and high reliability. Journal of Power Sources, 196(6):3260–3270.

Bogataj, D. and Bogataj, M. (2007). Measuring the supply chain risk and vulnerability

in frequency space. International Journal of Production Economics, 108(1):291–301.

Boudali, H., Crouzen, P., and Stoelinga, M. (2007). Dynamic fault tree analysis using

input/output interactive markov chains. In Dependable Systems and Networks, 2007.

DSN’07. 37th Annual IEEE/IFIP International Conference on, pages 708–717. IEEE.

Boudali, H. and Duga, J. (2005). A new bayesian network approach to solve dynamic

fault trees. In Reliability and Maintainability Symposium, 2005. Proceedings. Annual,

pages 451–456. IEEE.

http://www.afdc.energy.gov/data


www.manaraa.com

66

Brown, G., Carlyle, M., Salmerón, J., and Wood, K. (2006). Defending critical infras-

tructure. Interfaces, 36(6):530–544.

Byrne, B. (2016). Tesla Motors Inc (TSLA) Model S Catches Fire In France. http:

//www.valuewalk.com/2016/08/tesla-model-s-fire-france/.

Chopra, S., Reinhardt, G., and Mohan, U. (2007). The importance of decoupling recur-

rent and disruption risks in a supply chain. Naval Research Logistics (NRL), 54(5):544–

555.

Chopra, S. and Sodhi, M. S. (2004). Managing risk to avoid supply-chain breakdown.

MIT Sloan management review, 46(1):53.

Christopher, M. (2000). The agile supply chain: competing in volatile markets. Industrial

marketing management, 29(1):37–44.

Christopher, M. and Lee, H. (2004). Mitigating supply chain risk through improved

confidence. International journal of physical distribution & logistics management,

34(5):388–396.

Chung, W., Talluri, S., and Narasimhan, R. (2010). Flexibility or cost saving? sourcing

decisions with two suppliers. Decision Sciences, 41(3):623–650.

Coleman, L. (2006). Frequency of man-made disasters in the 20th century. Journal of

Contingencies and Crisis Management, 14(1):3–11.

Coolen, F. (1996). On bayesian reliability analysis with informative priors and censoring.

Reliability Engineering & System Safety, 53(1):91–98.

Coolen, F. (1997). An imprecise dirichlet model for bayesian analysis of failure data in-

cluding right-censored observations. Reliability Engineering & System Safety, 56(1):61–

68.

http://www.valuewalk.com/2016/08/tesla-model-s-fire-france/
http://www.valuewalk.com/2016/08/tesla-model-s-fire-france/


www.manaraa.com

67

Corbett, C. J. (2001). Stochastic inventory systems in a supply chain with asymmetric

information: Cycle stocks, safety stocks, and consignment stock. Operations research,

49(4):487–500.

Cui, L.-R., Hayakawa, Y., Yuge, T., Yoneda, T., Tamura, N., and Yanagi, S. (2013).

Minimal cut sequences and top event probability of dynamic fault tree. Journal of

Quality in Maintenance Engineering, 19(1):38–49.

Cui, T., Ouyang, Y., and Shen, Z.-J. M. (2010). Reliable facility location design under

the risk of disruptions. Operations research, 58(4-part-1):998–1011.

Currie, W. L. (1998). Using multiple suppliers to mitigate the risk of it outsourcing at

ici and wessex water. Journal of Information Technology, 13(3):169–180.

Dai, Z., Wang, Z., and Jiao, Y. (2011). Dynamic reliability assessment of protection

system based on dynamic fault tree and monte carlo simulation. In Zhongguo Di-

anji Gongcheng Xuebao(Proceedings of the Chinese Society of Electrical Engineering),

volume 31, pages 105–113. Chinese Society for Electrical Engineering.

Denning, S. (2017). What Went Wrong At Boeing? http://www.forbes.com/sites/

stevedenning/2013/01/21/what-went-wrong-at-boeing/.

Dong, Y. and Xu, K. (2002). A supply chain model of vendor managed inventory.

Transportation research part E: logistics and transportation review, 38(2):75–95.

Emadi, A., Lee, Y. J., and Rajashekara, K. (2008). Power electronics and motor drives

in electric, hybrid electric, and plug-in hybrid electric vehicles. IEEE Transactions on

industrial electronics, 55(6):2237–2245.

Fernandez, A. J. (2000). Bayesian inference from type ii doubly censored rayleigh data.

Statistics & probability letters, 48(4):393–399.

http://www.forbes.com/sites/stevedenning/2013/01/21/what-went-wrong-at-boeing/
http://www.forbes.com/sites/stevedenning/2013/01/21/what-went-wrong-at-boeing/


www.manaraa.com

68

Fleisch, E. and Tellkamp, C. (2005). Inventory inaccuracy and supply chain performance:

a simulation study of a retail supply chain. International journal of production eco-

nomics, 95(3):373–385.

Fontaras, G., Pistikopoulos, P., and Samaras, Z. (2008). Experimental evaluation of

hybrid vehicle fuel economy and pollutant emissions over real-world simulation driving

cycles. Atmospheric environment, 42(18):4023–4035.

Fuqua, N. B. (2003). The applicability of markov analysis methods to reliability, main-

tainability, and safety. Selected Topic in Assurance Related Technologies (START),

2(10):1–8.

Gallagher, K. S. and Muehlegger, E. (2011). Giving green to get green? incentives and

consumer adoption of hybrid vehicle technology. Journal of Environmental Economics

and management, 61(1):1–15.

Gardner, G. (2015). Average age of cars on U.S. roads. http://www.freep.com/story/

money/cars/2015/07/30/autos-average-age/30820613/.

Gelman, A., Carlin, J. B., Stern, H. S., and Rubin, D. B. (2014). Bayesian data analysis,

volume 2. Chapman & Hall/CRC Boca Raton, FL, USA.

Giannakis, M. and Louis, M. (2011). A multi-agent based framework for supply chain

risk management. Journal of Purchasing and Supply Management, 17(1):23–31.

Giunipero, L. C. and Aly Eltantawy, R. (2004). Securing the upstream supply chain: a

risk management approach. International Journal of Physical Distribution & Logistics

Management, 34(9):698–713.

Greco, M., Pattaro, C., Minelli, C., Thompson, J. R., et al. (2016). Bayesian analysis

of censored response data in family-based genetic association studies. Biometrical

Journal, 58(5):1039–1053.

http://www.freep.com/story/money/cars/2015/07/30/autos-average-age/30820613/
http://www.freep.com/story/money/cars/2015/07/30/autos-average-age/30820613/


www.manaraa.com

69

Gunasekaran, A. and Ngai, E. W. (2004). Information systems in supply chain integration

and management. European Journal of Operational Research, 159(2):269–295.

Haj-Assaad, S. (2014). Are Hybrids Reliable? AutoGuide.com News. http://www.

autoguide.com/auto-news/2014/12/are-hybrids-reliable-.html.

Hirschmann, D., Tissen, D., Schroder, S., and De Doncker, R. W. (2007). Reliabil-

ity prediction for inverters in hybrid electrical vehicles. IEEE transactions on power

electronics, 22(6):2511–2517.

Huang, Z. T., Wang, Z. S., and Liu, Z. B. (2012). Fault diagnosis of aircraft power

supply based on priority dynamic fault tree. In Advanced Materials Research, volume

443, pages 229–236. Trans Tech Publ.

Hunter, M. G. (2009). Strategic Information Systems: Concepts, Methodologies, Tools,

and Applications: Concepts, Methodologies, Tools, and Applications. IGI Global.

Hunting, B. (2016). 5 Disadvantages Of Hybrid Cars. http://www.autobytel.com/

hybrid-cars/car-buying-guides/5-disadvantages-of-hybrid-cars-115541/.

Jensen, C. (2009). Are Hybrids Really That Reliable? http://wheels.blogs.nytimes.

com/2009/10/29/are-hybrids-really-that-reliable/.

Joyce A. Martin, Brady E. Hamilton, M. J. O. et al. (2015). National Vital Statistics

Report, Births: Final Data for 2013. http://www.citymatch.org/publications/

news-room/181/national-vital-statistics-report-births-final-data-2013.

Kaushal, N., Shiau, C.-S. N., and Michalek, J. J. (2009). Optimal plug-in hybrid electric

vehicle design and allocation for diverse charging patterns. In ASME 2009 Interna-

tional Design Engineering Technical Conferences and Computers and Information in

Engineering Conference, pages 899–908. American Society of Mechanical Engineers.

http://www.autoguide.com/auto-news/2014/12/are-hybrids-reliable-.html
http://www.autoguide.com/auto-news/2014/12/are-hybrids-reliable-.html
http://www.autobytel.com/hybrid-cars/car-buying-guides/5-disadvantages-of-hybrid-cars-115541/
http://www.autobytel.com/hybrid-cars/car-buying-guides/5-disadvantages-of-hybrid-cars-115541/
http://wheels.blogs.nytimes.com/2009/10/29/are-hybrids-really-that-reliable/
http://wheels.blogs.nytimes.com/2009/10/29/are-hybrids-really-that-reliable/
http://www.citymatch.org/publications/news-room/181/national-vital-statistics-report-births-final-data-2013
http://www.citymatch.org/publications/news-room/181/national-vital-statistics-report-births-final-data-2013


www.manaraa.com

70

Kleindorfer, P. R. and Saad, G. H. (2005). Managing disruption risks in supply chains.

Production and operations management, 14(1):53–68.

Klibi, W., Martel, A., and Guitouni, A. (2010). The design of robust value-creating

supply chain networks: a critical review. European Journal of Operational Research,

203(2):283–293.

Koraku, B.-k. (2003). TOYOTA Hybrid System. http://www.sze.hu/~szenasy/

SZINKRONMOTKUTFEJL/THS-II.pdf.

Lambert, F. (2016). Tesla driver dies in a Model S after hitting a tree, battery

caught fire, Tesla launches an investigation. https://electrek.co/2016/09/07/

tesla-driver-dies-burning-model-s-hitting-tree-tesla-investigation/.

Lee, H. L., So, K. C., and Tang, C. S. (2000). The value of information sharing in a

two-level supply chain. Management science, 46(5):626–643.

Li, Q., Gao, W., Zhu, S., and Cao, G. (2013). To lie or to comply: Defending against

flood attacks in disruption tolerant networks. IEEE Transactions on Dependable and

Secure Computing, 10(3):168–182.

Lunn, D. J., Thomas, A., Best, N., and Spiegelhalter, D. (2000). Winbugs-a bayesian

modelling framework: concepts, structure, and extensibility. Statistics and computing,

10(4):325–337.

MacKenzie, C. A., Barker, K., and Santos, J. R. (2014). Modeling a severe supply

chain disruption and post-disaster decision making with application to the japanese

earthquake and tsunami. IIE Transactions, 46(12):1243–1260.

MacKenzie, C. A., Santos, J. R., and Barker, K. (2012). Measuring changes in inter-

national production from a disruption: Case study of the japanese earthquake and

tsunami. International Journal of Production Economics, 138(2):293–302.

http://www.sze.hu/~szenasy/SZINKRONMOTKUTFEJL/THS-II.pdf
http://www.sze.hu/~szenasy/SZINKRONMOTKUTFEJL/THS-II.pdf
https://electrek.co/2016/09/07/tesla-driver-dies-burning-model-s-hitting-tree-tesla-investigation/
https://electrek.co/2016/09/07/tesla-driver-dies-burning-model-s-hitting-tree-tesla-investigation/


www.manaraa.com

71

Manno, G., Chiacchio, F., Compagno, L., DUrso, D., and Trapani, N. (2012). Matcarlore:

An integrated ft and monte carlo simulink tool for the reliability assessment of dynamic

fault tree. Expert Systems with Applications, 39(12):10334–10342.

Manuj, I. and Mentzer, J. T. (2008). Global supply chain risk management strategies.

International Journal of Physical Distribution & Logistics Management, 38(3):192–

223.

Meegahawatte, D. (2010). Analysis of a fuel cell hybrid commuter railway vehicle. Journal

of Power Sources, 195(23):7829–7837.

Mirhakimi, F. and Karimi, A. (2014). A preliminary study for improving reliability in

hybrid vehicles. Procedia Computer Science, 42:308–312.

Montani, S., Portinale, L., Bobbio, A., Varesio, M., et al. (2006). A tool for automatically

translating dynamic fault trees into dynamic bayesian networks. In Reliability and

Maintainability Symposium, 2006. RAMS’06. Annual, pages 434–441. IEEE.

Norrman, A. and Jansson, U. (2004). Ericsson’s proactive supply chain risk manage-

ment approach after a serious sub-supplier accident. International journal of physical

distribution & logistics management, 34(5):434–456.

OHPI (2016). Average Annual Miles per Driver by Age Group. https://www.fhwa.

dot.gov/ohim/onh00/bar8.htm.

PanasonicCorporation (2016). Panasonic-Ni-MH-Battery-

Handbook. http://www.repeater-builder.com/backup-power/pdfs/

panasonic-ni-mh-battery-handbook.pdf.

Panday, A. (2015). Hybrid electric vehicle performance analysis under various tempera-

ture conditions. Energy Procedia, 75:1962–1967.

https://www.fhwa.dot.gov/ohim/onh00/bar8.htm
https://www.fhwa.dot.gov/ohim/onh00/bar8.htm
http://www.repeater-builder.com/backup-power/pdfs/panasonic-ni-mh-battery-handbook.pdf
http://www.repeater-builder.com/backup-power/pdfs/panasonic-ni-mh-battery-handbook.pdf


www.manaraa.com

72

Parlar, M. and Perry, D. (1996). Inventory models of future supply uncertainty with

single and multiple suppliers. Naval Research Logistics (NRL), 43(2):191–210.

Pereira, J. V. (2009). The new supply chain’s frontier: Information management. Inter-

national Journal of Information Management, 29(5):372–379.

Ping, H., Rong, Z., and Guangzhou, Z. (2010). Analysis on reliability of series hybrid

electric transit bus. Automobile Technology, 1:011.

Pourhashemi, P. (2014). Application of the fuel-optimal energy management in design

study of a parallel hybrid electric vehicle. Journal of Fuels, 2014.

PriusChat (2013). Hybrid Battery Survey-Gen2 Prius 2004-2009. https://priuschat.

com/threads/hybrid-battery-survey-gen2-prius-2004-2009.132362/.

Raj Sinha, P., Whitman, L. E., and Malzahn, D. (2004). Methodology to mitigate sup-

plier risk in an aerospace supply chain. Supply Chain Management: an international

journal, 9(2):154–168.

Rao, K. D., Gopika, V., Rao, V. S., Kushwaha, H., Verma, A. K., and Srividya, A.

(2009). Dynamic fault tree analysis using monte carlo simulation in probabilistic

safety assessment. Reliability Engineering & System Safety, 94(4):872–883.

Rausand, M., Arnljot, H., et al. (2004). System reliability theory: models, statistical

methods, and applications, volume 396. John Wiley & Sons.

RebuildingTohoku (2017). ONE YEAR AFTER THE DISASTER. http://www.

rebuildingtohoku.com/index.php?p=article_full&id=272&type=Abenomics.

Rose, A., Liao, S.-Y., and Bonneau, A. (2011). Regional economic impacts of a verdugo

scenario earthquake disruption of los angeles water supplies: a computable general

equilibrium analysis. Earthquake Spectra, 27(3):881–906.

https://priuschat.com/threads/hybrid-battery-survey-gen2-prius-2004-2009.132362/
https://priuschat.com/threads/hybrid-battery-survey-gen2-prius-2004-2009.132362/
http://www.rebuildingtohoku.com/index.php?p=article_full&id=272&type=Abenomics
http://www.rebuildingtohoku.com/index.php?p=article_full&id=272&type=Abenomics


www.manaraa.com

73

Schmitt, A. J. and Singh, M. (2009). Quantifying supply chain disruption risk using

monte carlo and discrete-event simulation. In Winter Simulation Conference, pages

1237–1248. Winter Simulation Conference.

Sculli, D. and Wu, S. (1981). Stock control with two suppliers and normal lead times.

Journal of the Operational Research Society, 32(11):1003–1009.

Sheffi, Y. et al. (2005). The resilient enterprise: overcoming vulnerability for competitive

advantage. MIT Press Books, 1.

Sherwin, M. D., Medal, H., and Lapp, S. A. (2016). Proactive cost-effective identification

and mitigation of supply delay risks in a low volume high value supply chain using

fault-tree analysis. International Journal of Production Economics, 175:153–163.

Sodhi, M. S. (2014). Managing supply chain risk. Springer.

Song, Y. and Wang, B. (2013). Survey on reliability of power electronic systems. IEEE

Transactions on Power Electronics, 28(1):591–604.

Staw, B. M. (1980). The consequences of turnover. Journal of occupational Behaviour,

pages 253–273.

Stewart, G. (1995). Supply chain performance benchmarking study reveals keys to supply

chain excellence. Logistics Information Management, 8(2):38–44.

Tang, Z. and Dugan, J. B. (2004). Minimal cut set/sequence generation for dynamic

fault trees. In Reliability and Maintainability, 2004 Annual Symposium-RAMS, pages

207–213. IEEE.

Tomlin, B. (2006). On the value of mitigation and contingency strategies for managing

supply chain disruption risks. Management Science, 52(5):639–657.



www.manaraa.com

74

Tuncel, G. and Alpan, G. (2010). Risk assessment and management for supply chain

networks: A case study. Computers in industry, 61(3):250–259.

Van Dorp, J. R. and Mazzuchi, T. A. (2004). A general bayes exponential inference model

for accelerated life testing. Journal of statistical planning and inference, 119(1):55–74.

Verma, A. K., Srividya, A., and Karanki, D. R. (2010). Reliability and safety engineering,

volume 43. Springer.

Waller, M., Johnson, M. E., and Davis, T. (1999). Vendor-managed inventory in the

retail supply chain. Journal of business logistics, 20(1):183.

WikiMotors (2016). Toyota 1NZ-FE Engine — Reliability, Tuning, Supercharger. http:

//mywikimotors.com/toyota-1nz/.

Williamson, E. A., Harrison, D. K., and Jordan, M. (2004). Information systems de-

velopment within supply chain management. International Journal of Information

Management, 24(5):375–385.

Wong, M., Lam, K., and Lo, E. (2005). Bayesian analysis of clustered interval-censored

data. Journal of dental research, 84(9):817–821.

Wu, F., Yeniyurt, S., Kim, D., and Cavusgil, S. T. (2006). The impact of information

technology on supply chain capabilities and firm performance: A resource-based view.

Industrial Marketing Management, 35(4):493–504.

Yevkin, O. (2015). An efficient approximate markov chain method in dynamic fault tree

analysis. Quality and Reliability Engineering International.

Yiping, Y. and Minghua, C. (1999). The application on dynamic fault tree analysis for

dissimilar fault-tolerant flight control system. In Digital Avionics Systems Conference,

1999. Proceedings. 18th, volume 1, pages 3–B. IEEE.

http://mywikimotors.com/toyota-1nz/
http://mywikimotors.com/toyota-1nz/


www.manaraa.com

75

Yu, Z., Yan, H., and Edwin Cheng, T. (2001). Benefits of information sharing with

supply chain partnerships. Industrial management & Data systems, 101(3):114–121.

Zhang, P. and Chan, K. W. (2012). Reliability evaluation of phasor measurement unit

using monte carlo dynamic fault tree method. IEEE Transactions on Smart Grid,

3(3):1235–1243.

Zhang, X., Sun, L., Sun, H., Guo, Q., and Bai, X. (2016). Floating offshore wind

turbine reliability analysis based on system grading and dynamic fta. Journal of Wind

Engineering and Industrial Aerodynamics, 154:21–33.

Zsidisin, G. A. and Ritchie, B. (2008). Supply chain risk: A handbook of assessment.

Management, and Performance. Springer, New York.


	2017
	Static and dynamic fault tree analysis with application to hybrid vehicle systems and supply chains
	Xue Lei
	Recommended Citation


	TABLE OF CONTENTS
	LIST OF TABLES
	LIST OF FIGURES
	ACKNOWLEDGEMENTS
	ABSTRACT
	1. OVERVIEW OF STATIC AND DYNAMIC FAULT TREE ANALYSIS
	2. ASSESSING THE RELIABILITY OF HYBRID VEHICLE SYSTEM: APPLICATION TO THE 2004 TOYOTA PRIUS
	2.1 Introduction
	2.2 Model
	2.2.1 Fault Tree
	2.2.2 Reliability Based on Exponential Distribution
	2.2.3 Reliability Based on Bayesian Analysis

	2.3 Application to Hybrid System
	2.3.1 Fault Tree Model
	2.3.2 Data Collection and Component Probability Estimation
	2.3.3 Results
	2.3.4 Modified Reliability Model Based on HV Battery and Engine

	2.4 Conclusions

	3. SUPPLY CHAIN RISK ANALYSIS USING DYNAMIC FAULT TREE
	3.1 Introduction
	3.2 Literature Review
	3.3 Model
	3.3.1 Main-Backup Supply Chain
	3.3.2 Mutual-Assistance Supply Chain

	3.4 Illustrative Example
	3.4.1 Simulation Methods for Main-Backup Supply Chain
	3.4.2 Simulation Methods for Mutual-Assistance Supply Chain

	3.5 Conclusions

	BIBLIOGRAPHY

